2. Периодический закон. Периодическая система. Электроотрицательность. Степени окисления

Современная формулировка Периодического закона, открытого Д. И. Менделеевым в 1869 г.:

Свойства элементов находятся в периодической зависимости от порядкового номера.

Периодически повторяющийся характер изменения состава электронной оболочки атомов элементов объясняет периодическое изменение свойств элементов при движении по периодам и группам Периодической системы.

Периодическая система химических элементов																			
1 IA группа Символ Н 1 Порядковый номер									18 VIIIA группа	Период									
1	H 1	2		Onab	11	1,008	порядков	выи номе	P				13	14 IVA	15	16	17	He 2	
	Водород	ПА группа		Назван	ие — Вод		Этносите.						IIIА группа	группа	VA группа	VIA группа	VIIA группа	4,003 Гелий	*
	Li ³	Be 4	1				атомная	масса					B 5	C 6	N 7	0 8		Ne 10	1
2	6,94	9,01											10,81	12,01	14,007			20,18	2
		Бериллий				1 0				- 10		- 10		Углерод	Азот	Кислород		Неон	
3	Na 11 22,99	Mg 12 24,31		IVB	VB	VIB	VIII	VIIE ₀	VIIE,	VIIIB ₂	11 IB	12 IIB	Al 13 26,98	Si 14 28,086	P 15 30,97	$ S_{32,066} ^{16}$	CI 17 35,45	Ar 18 39,95	
	Натрий	Магний	групп		1		группа	группа	группа	группа	группа		Алюминий	,		1 1	Хлор	Аргон	ľ
	K 19	Ca 20	Sc 2	1 Ti 2	2 V 2	3 Cr 24	Mn 25	Fe 26	Co 27	Ni 28	Cu 29	Zn 30	Ga 31	Ge 32	As 33	Se 34	Br 35	Kr 36	1
4	39,10	40,08	44,9		, .					58,69	63,55	65,39	69,72	72,61	74,92	78,96	79,90	83,80	4
	Калий Rh 37	_	Скандий		Ванадий 0 Nb 4	Хром	Марганец	_	Кобальт	Никель	Медь	Цинк		Германий Sn 50		-	Бром Т 53	Криптон	-
5	Rb 37 85,47	87,62	88.9						Rh 45	106,42	Ag 47 107,87	Cd 48 112,41	114,82	Sn 50 118,71	Sb 51 121,76		126,90	Xe 54 131,29	
	Рубидий	Стронций	Иттрий	Циркон	ий Ниобий	Молибден	Технеций	Рутений	Родий	Палладий				Олово	Сурьма		Иод	Ксенон	
	Cs 55	Ba 56				3 W 74				Pt 78	224		1	Pb 82		Po 84		Rn 86	
6	132,91	137,33								195,08	196,97	200,59	204,38	207,2	208,98	208,98	209,99	222,02	6
	Цезий Ет 87	Барий	*	Гафний	Тантал	Вольфрам	_	Осмий	Иридий M t. 109	Платина 110	Золото 111	Ртуть 112	Таллий 113	Свинец 114	Висмут		Астат 117	Радон 118	1
7	Fr 87 223,02	Ra 88 226,03	Ac-I	r 261,1	1 262,1	$\begin{array}{c c} \mathbf{Sg}^{-106} \\ \mathbf{Sg}^{-266,12} \end{array}$	267,12	269,13	268,14	[271]	[272]	[277]	110	[289]	110	[289]	***	110	7
	Франций		**	Резерфор	э- ий Дубний	Сиборгий	Борий	Хассий	Мейтнерий										
		_		La 57	Ce 58	Pr 59	Nd 60		Sm 62		Gd 64					88 Tm		Lu	72
	* Ла	нтанои	іды	138,91	140,12	140,91	144,24	144,91	150,36	151,97 Европий	157,25 Гадолиний	1) 164,9 й Гольмий		26 168,9 Тулий	,	04 174 ий Лютен	
				Лантан	Церий Th 90	Празеодим Ра 91	Неодим 1 92	Прометий	_	Ат 95	_	_		_	<u> </u>		<u> </u>	_	_
	** A	стинои	ды	Ac 89 227,03	Th 90 232,04	Pa 91 231,04	238,03	$N_{\mathbf{p}}^{93}_{237,05}$	Pu 94 244,06	243,06	247,07	247,07	V	A.J.G					
		,		Актиний	Торий	Протактивний	Уран	Нептуний	Плутоний	Америций	Кюрий	Берклий	Калифории	й Эйнштейн	ий Фермий	Менделев	ий Нобели	й Лоурев	сий

Проследим, например, изменение высших и низших степеней окисления у элементов IA – VIIA-групп во втором – четвертом периодах по табл. 3.

Положительные степени окисления проявляют все элементы, за исключением фтора. Их значения увеличиваются с ростом заряда ядер и совпадают с числом электронов на последнем энергетическом уровне (за исключением кислорода). Эти степени окисления называют высшими степенями окисления. Например, высшая степень окисления фосфора Р равна +V.

Таблица 3

77	Группы										
Период	IA	IIA	IIIA	IVA	VA	VIA	VIIA				
2	₃ Li +I	₄ Be +II	₅ B +III	₆ C +IV -IV	7N +V -III	₈ О (+II со фтором) -II	₉ F — —				
3	11Na +I	₁₂ Mg +II	₁₃ Al +III	14Si +IV -IV	15P +V -III	16S +VI -II	₁₇ Cl +VII -I				
4	19K +I	₂₀ Ca +II	₃₁ Ga +III	₃₂ Ge +IV -IV	₃₃ As +V -III	34Se +VI -II	35Br +VII -I				

Отрицательные степени окисления проявляют элементы, начиная с углерода С, кремния Si и германия Ge. Значения их равны числу электронов, недостающих до восьми. Эти степени окисления называют *низшими* степенями окисления. Например, у атома фосфора P на последнем энергетическом уровне недостает трех электронов до восьми, значит, низшая степень окисления фосфора P равна – III.

Значения высших и низших степеней окисления повторяются периодически, совпадая по группам; например, в IVA-группе углерод C, кремний Si и германий Ge имеют высшую степень окисления +IV, а низшую степень окисления – IV.

Эта периодичность изменения степеней окисления отражается на периодическом изменении состава и свойств химических соединений элементов.

Аналогично прослеживается периодическое изменение электроотрицательности элементов в 1–6-м периодах IA– VIIA-групп (табл. 4).

В каждом периоде Периодической системы электроотрицательность элементов увеличивается при возрастании порядкового номера (слева направо).

Таблица 4

Попис	Группы									
Период	IA	IIA	IIIA	IVA	VA	VIA	VIIA			
1	H 2,10									
2	Li	Be	B	C	N	O	F			
	0,97	1,47	2,01	2,50	3,07	3,50	4,10			
3	Na	Mg	Al	Si	P	S	Cl			
	1,01	1,23	1,47	2,25	2,32	2,60	2,83			
4	K	Ca	Ga	Ge	As	Se	Br			
	0,91	1,04	1,82	2,02	2,10	2,48	2,74			
5	Rb	Sr	In	Sn	Sb	Te	I			
	0,89	0,99	1,49	1,72	1,82	2,01	2,21			
6	Cs	Ba	Tl	Pb	Bi	Po	At			
	0,86	0,97	1,44	1,55	1,67	1,76	1,90			

В каждой **группе** Периодической системы электроотрицательность уменьшается при возрастании порядкового номера (сверху вниз). Фтор F обладает наивысшей, а цезий Cs наинизшей электроотрицательностью среди элементов 1–6-го периодов.

У типичных неметаллов – высокая электроотрицательность, а у типичных металлов – низкая.

Примеры заданий частей А, В

- 1. В 4-м периоде число элементов равно
- 1) 2
- 2) 8
- 3) 18
- 4) 32
- **2.** Металлические свойства элементов 3-го периода от Na до Cl
- 1) силиваются
- 2) ослабевают
- 3) не изменяются
- 4) не знаю
- 3. Неметаллические свойства галогенов с увеличением порядкового номера
- 1) возрастают
- 2) понижаются
- 3) остаются без изменений
- 4) не знаю
- **4.** В ряду элементов Zn Hg Co Cd один элемент, не входящий в группу, это
- 1) Ca
- 2) Cs
- 3) Cd
- 4) Co

	0
	5. Металлические свойства элементов повышаются по ряду
	1) In – Ga – Al
	2) K – Rb – Sr
	3) Ge – Ga – Tl
	4) Li – Be – Mg
	 Неметаллические свойства в ряду элементов Al − Si − C − N
	1) увеличиваются
	2) уменьшаются
	3) не изменяются
	4) не знаю
	7 Programmen O. S. So. To promoner (no menor) ortains
	7. В ряду элементов O – S – Se – Те размеры (радиусы) атома
	1) уменьшаются
	2) увеличиваются
	3) не изменяются
	4) не знаю
	8. В ряду элементов $P - Si - Al - Mg$ размеры (радиусы) атома
	1) уменьшаются
	2) увеличиваются
	3) не изменяются
	4) не знаю
	9. Для фосфора элемент с меньшей электроотрицательностью – это
	1) N
	2) S
	3) Cl
	4) Mg
	10. Молекула, в которой электронная плотность смещена к атому фосфора, – это
	1) PF ₃
	2) PH ₃
	3) P_2S_3
	4) P_2O_3
	11. Высшая степень окисления элементов проявляется в наборе оксидов и фторидов
	1) ClO ₂ , PCl ₅ , SeCl ₄ , SO ₃
	2) PCl, Al ₂ O ₃ , KCl, CO
	3) SeO ₃ , BCl ₃ , N ₂ O ₅ , CaCl ₂
	4) AsCl ₅ , SeO ₂ , SCl ₂ , Cl ₂ O ₇
	12. Низшая степень окисления элементов – в их водородных соединениях и фторидах
наб	opa
	1) ClF ₃ , NH ₃ , NaH, OF ₂
	2) H ₃ S ⁺ , NH+, SiH ₄ , H ₂ Se
	3) CH ₄ , BF ₄ , H ₃ O ⁺ , PF ₃
	4) PH ₃ , NF+, HF ₂ , CF ₄

13. Валентность для многовалентного атома одинакова в ряду соединений

1) SiH₄ – AsH₃ – CF₄ 2) PH₃ – BF₃ – ClF₃ 3) AsF₃ – SiCl₄ – IF₇ 4) H₂O – BClg – NF₃

14. Укажите соответствие между формулой вещества или иона и степенью окисления углерода в них

ФОРМУЛА	степень окисления
A) CaC ₂	1) -4
Б) CN ⁻	2) -1
B) HCO ₃	3) 0
Γ) HC(H)O	4) +2
	5) +3
	6) $+4$

Ответы

1. 3. **2.** 2. **3.** 2. **4.** 4. **5.** 3. **6.** 1. **7.** 2. **8.** 1. **9.** 4. **10.** 2. **11.** 3. **12.** 2. **13.** 2. **14.** A-2, Б-4, B-6, Γ-3.